Relationship between gene co-expression and sharing of transcription factor binding sites in Drosophila melanogaster

نویسندگان

  • Antonio Marco
  • Charlotte Konikoff
  • Timothy L. Karr
  • Sudhir Kumar
چکیده

MOTIVATION In functional genomics, it is frequently useful to correlate expression levels of genes to identify transcription factor binding sites (TFBS) via the presence of common sequence motifs. The underlying assumption is that co-expressed genes are more likely to contain shared TFBS and, thus, TFBS can be identified computationally. Indeed, gene pairs with a very high expression correlation show a significant excess of shared binding sites in yeast. We have tested this assumption in a more complex organism, Drosophila melanogaster, by using experimentally determined TFBS and microarray expression data. We have also examined the reverse relationship between the expression correlation and the extent of TFBS sharing. RESULTS Pairs of genes with shared TFBS show, on average, a higher degree of co-expression than those with no common TFBS in Drosophila. However, the reverse does not hold true: gene pairs with high expression correlations do not share significantly larger numbers of TFBS. Exception to this observation exists when comparing expression of genes from the earliest stages of embryonic development. Interestingly, semantic similarity between gene annotations (Biological Process) is much better associated with TFBS sharing, as compared to the expression correlation. We discuss these results in light of reverse engineering approaches to computationally predict regulatory sequences by using comparative genomics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels

κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...

متن کامل

Functional Evolution of cis-Regulatory Modules at a Homeotic Gene in Drosophila

It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an ex...

متن کامل

Mapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels

κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...

متن کامل

Large-Scale Turnover of Functional Transcription Factor Binding Sites in Drosophila

The gain and loss of functional transcription factor binding sites has been proposed as a major source of evolutionary change in cis-regulatory DNA and gene expression. We have developed an evolutionary model to study binding-site turnover that uses multiple sequence alignments to assess the evolutionary constraint on individual binding sites, and to map gain and loss events along a phylogeneti...

متن کامل

Tracing the evolutionary history of Drosophila regulatory regions with models that identify transcription factor binding sites.

Much of evolutionary change is mediated at the level of gene expression, yet our understanding of regulatory evolution remains unsatisfying. In light of recent data indicating that transcription factor binding sites undergo substantial turnover between species, we attempt to quantify the process of binding site turnover in regulatory regions of well-studied genes controlling embryonic patternin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 25 19  شماره 

صفحات  -

تاریخ انتشار 2009